Metaplectic covers of Kac–Moody groups and Whittaker functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whittaker Functions on Metaplectic Groups

The theory of Whittaker functions is of crucial importance in the classical study of automorphic forms on adele groups. Motivated by the appearance of Whittaker functions for covers of reductive groups in the theory of multiple Dirichlet series, we provide a study of Whittaker functions on metaplectic covers of reductive groups over local fields. Thesis Supervisor: Benjamin Brubaker Title: Assi...

متن کامل

Metaplectic Whittaker Functions and Crystal Bases

We study Whittaker functions on nonlinear coverings of simple algebraic groups over a non-archimedean local field. We produce a recipe for expressing such a Whittaker function as a weighted sum over a crystal graph, and show that in type A, these expressions agree with known formulae for the p-part of Multiple Dirichlet Series.

متن کامل

Metaplectic Whittaker Functions and Crystals of Type B

Let n be an integer and let F be a nonarchimedean local field whose characteristic is not a prime dividing n. Let μk be the group of k-th roots of unity in the algebraic closure of F ; we assume that μ2n ⊂ F . Let G be a split, simply-connected semisimple algebraic group over F . We assume that G is actually defined over the ring o of integers in F in such a way that K = G(o) is a special maxim...

متن کامل

Theta functions on covers of symplectic groups

We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$‎. ‎This representation is obtained from the residues of Eisenstein series on this group‎. ‎If $r$ is odd‎, ‎$nle r

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2019

ISSN: 0012-7094

DOI: 10.1215/00127094-2018-0049